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FOREWORD

This report describes the implementation of the Mie-Grueneisen and P-o equations of
state in the DYSMAS code. The motivation for these enhancements is to provide an equation
of state that treats partially saturated sand. The pores in the P-o model are used to simulate
the sand pore volume free from water, while the Mie-Grueneisen equation of state accounts
for the water-grain mixture. Additionally, the Mie-Grueneisen equations of state provides a
means of modeling the equations of state of metals.
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CHAPTER 1
INTRODUCTION

The P-o equation of state was original proposed by Herrman! to model porous material.
This equation of state assumes that a porous material will initially behave elastically when
a stress is applied. As the stress is increased, the pores in the material start to crushed,
which is an irreversible phenomenon and leads to plastic compression. Unloading of the
partially crushed porous material follows a new, elastic curve that depends on the maximum
stress achieved by the material. At sufficiently high stress, all pores are eliminated, and the
equation of state behavior is that of the original solid material. This P-a model has been used
in its original form in the WONDY code? and a modified version of it has been included
in the CTH code?. This modification was proposed by Carroll and Holt* and is designed to
improve the consistency of the P-a model.

Although the purpose of the P-a equation of state is to treat porous matenal the focus in
this report is sand. Sand consists of sand grains, water and air or void. This last component
will be absent if the sand is fully saturated. However, in most natural situations this will not
be the case. The solid part of the P-a model represents the sand grain-water mixture, while
the porous part accounts for the air-void content.

It is well known that sand supports a shear stress and several Effective Stress Models
have been formulated to represent this characteristic.> Although the P-o equation of state
cannot directly treat this phenomenon, the shear strength of sand can be addressed by the
application of a deviatoric stress model in conjunction with the P-a equation of state.

The Mie-Grueneisen equation of state is used to model the solid state associated with
the P-a model. Chapter 2 outlines the Mie-Grueneisen model and its incorporation into
DYSMAS. Chapter 3 discusses the P-a equation of state and its implementation while Chapter
4 presents numerical examples. A summary of the report is provided in Chapter 5.
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CHAPTER 2
MIE-GRUENEISEN EQUATION OF STATE

The form of the Mie-Grueneisen equation of state described in Reference 3 has been
employed.
EQUATION

The Mie-Grueneisen equation of state provides p as a function of p and e. The basic
form is:

p = pr(p) + Topole — e:(p)) (1)

where I' = ;1;%5 and T'p = T',p,. The subscript r refers to the reference state which is an
isentrope passing through the reference point (po, po, €0). The reference state is defined by:

Euly

Do
er =€ +p—+ 5~ (2)
Hoo T 2(1— 5n)
2
PoCs 1t dYy Y
;= — (Y +p—+ ——— . 3
P p°+2(1—5u)< +”du+(1—5u)) ®
Here:
— Po
p=1-5 @
p
and
5
Y(p) =) ap’. ©)
k=0
The ax coefficients are defined by:
1
ap=1; a1 = 37 4= T 2[(I‘0 + kS)ar_y — TpSag_s) )

where S is the coefficient relating shock velocity and particle velocity and I, is the Grueneisen
parameter at the initial density p,. Note the definition of p, follows from e, via:

pr  de,
D 7

since the reference state is isentropic.
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SOUND SPEED

An additional variable required by DYSMAS is sound speed. This is derived as follows:

2_ (9 (9r 9p\ (9e
¢ —( p) (0p)3+(36>p( p>s’ ®)

Using Equations (1) and (7) :

op\ _

(&)p =T'po , )
p\ _dpr Topo

(0p>e_ o~ A (10

Substituting these definitions into Equation (8) yields the expression for sound speed:

d I

2 Dr oPo

—_  ——(p— 1) . 11
c - ] z(p P) ( )

To evaluate c? it is necessary to compute dp, /dp. Differentiating Equation (3) produces:

dpy
dp

_ podpe _ _ P [ 2 w@-SpdY LBV
p

du 208w |(1=Sp)f | (L—5m) du " 42

Rearranging Equation (11) and substituting Equation (10) yields an additional relation
which is applied in the DYSMAS equation of state routines is:

a_P _ 2_FoPoP ‘
(3).~ o= @
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CHANGES OF STATE

The DYSMAS code requires isentropic and Hugoniot changes of state calculations: given
an initial state (p1, €1) and a second density, p,, compute the corresponding energy e, which
is on the original isentrope or Hugoniot.

For an isentropic process

de:ﬂp%f_z i—;-i--r%(e—e,) dp 14

Since the reference state is isentropic,

de, = 2dp (15)
p
Equation (14) reduces to:
d(e —ey) dp
(e _ 67.) 0p0 pz ( )
Integrating this equation produces the isentropic change of state formula.
Lopo(pr —
er = er(pr) + o1 = e (o eap( A=) ) an

The Hugoniot change of state relation follows directly from the Hugoniot condition

2p1p2(e2 — e1) . (18)

p1+p2=
(Pz - Pl)

Eliminating e from this equation via Equation (1) and solving for p, produces

_ p1p2C — p1(p2 — p1)
p2=n + Sl’zgpl! _ p1p2 ’ (19)

oPo

where:

_ [pr(p2) — pr(p1)]
C = {er(pz) - 67(/)1) + Lopo }

o . ~ P
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DELTA FORMULATION

For compatibility with the DYSMAS code, Equation (1) is written in delta form which
references pressure, density, and energy to an ambient state (peo, Poo, €o0). Each material
has its own density and energy ambient state, while a common ambient pressure is used for
all materials. This leads to the following definitions for the delta variables:

Ap=p— P
Apr = pr — Po
Ae=¢€e—ex (@2))
Aer = 61- - 600
Ap=p— poo
Recasting p in delta form produces
14 P

The delta form diminishes the truncation error in expressions which contain the difference
- between to state variables. This issue is of concern since DYSMAS is a single precision code.
The equations necessary to implement the Mie-Grueneisen equation of state in DYSMAS
are re-cast as follows:

Eq.(1) : Ap= Ap, 4+ TopolAe — Ae,], (23

Bq.(11) : ¢ = ‘Z’; +=42(8p - Ap.), 24)

Eq. (13) (Z-i-%)e - [c“’— F"""(Af; +p°°)] , ©25)

Eq.(17): Aes = Aer(ps) + [Aes — Aer(pl)]exp(ropo(Ap':;z_ Apl)) @6
Eq (19): sp=2020—nBr=8p) (o (AP =Apn)

I‘oPo

-
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DYSMAS IMPLEMENTATION

The DYSMAS code requires equation of state routines which perform the 6 different
functions listed below:

o Function f;: Compute Apy,c? given Apy, Aey,

« Function f,: Compute Ap;,Aeg,c3 given Apy, Aey, Apy and assuming an isentropic
change of state between Ap; and Apa,

«  Function f3: Compute Apy, Aes, c2 given Apy, Aer, Apy and assuming a change of state
along the Hugoniot between Ap; and Apa,

«  Function f;: Compute Ap;,c? given Apy, Aey,

« Function fs: Compute Ap2,Aes,c3 given Apy, Aey, Ap; and assuming an isentropic
change of state between Ap; and Apa,

- Function fg: Compute Aps, Aey, c3 given Apy, Aey, Ap, and assuming a change of state
along the Hugoniot state between Ap; and Ap,.

A description of these subroutines is provided in Appendix A.
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CHAPTER 3
P-a EQUATION OF STATE
DESCRIPTION
The basic form of the P-o equation is:
p=plap,c) = 2229 28)
where
a=2. (29)
P

Here the subscript s denotes properties of the underlying solid material and the variables
that are not subscripted pertain to the porous media. The condition of the porous media is
dictated by the function

o= A(p, pt,pmaz) (30)

which is sketched in Figure 1 and has multiple elastic branches. Here p; is the material
derivative of p; positive values indicate loading, while negative ones indicate unloading.
Pmax is the maximum pressure that has been sustained by the material. This parameter
follows the fluid and is used to select the appropriate branch of the elastic curve.

For values of o > 1, the porous material sound speed is defined as a linear function
of porosity:
(@—1)
(o—1)"
When a = 1, ¢ is computed from the Mie-Grueneisen relations. Here ¢, and c. are the
reference speeds of sound in the fully dense solid and virgin materials.

€

c=cs+(ce —¢cs)

ELASTIC AND PLASTIC o RELATIONS

As shown in Figure 1, the function A has multiple branches and features an unloaded
(virgin) value of a=a,. The appropriate branch of A is selected as follows:

1. When loaded, the virgin material compresses elastically along curve A7, until a pressure
of pe is reached (i.e. point A).

2. Inresponse to further loading, the plastic curve A, is followed until the pressure reaches
ps. Here a=1, a value which is retained forever.

3. The unloading path followed from a point on the plastic curve, is along the intersecting
elastic curve. For example, point B unloads along Az,.

4. From a position on an elastic curve, the loading path follows the elastic curve until the
plastic curve is reached. Further loading is along the plastic curve.
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The above description of p-o- material behavior indicates that a state (p, pmas, pt) is on the
plastic curve if p; 2 0 and « = Api(p); otherwise it is on the elastic curve which intersects the
plastic curve at pmax. Noting that A is a monotone function of p, it is possible to simplify
this rule: a state is on the plastic curve if p 2pmax and on the elastic curve otherwise.

Alternatively, it is possible to cast the test for the plastic curve location in terms of
«: a state is on the plastic curve if a<ony;; and otherwise on the elastic curve intersecting
Qmin. Here amin is the minimum value of o attained by the material in the cell. Since it
is a historical marker, it must be convected with the fluid and it is initialized by setting
Qmin = 0. This rule can be expressed:

_ DY — Apl(P) 7’f Apl(p) S Umin
a = A(p7 amm) - { Ael(p: amin) otherwise (32)

Inverting A, as is shown in Figure 2, and solving for p yields:

Ppl(a) lf a < Omin (33)

P.(o,amin)  otherwise

p= P(a,amin) = {

The equation for the plastic curve is:

2
bs—P
A =14 (a.—1 (—-———) , 34
Pl(p) ( e ) Ps — e (34)
which can also be inverted to obtain:
1
(a—-1)}*
P — o — — . 35
pi(a@) = ps — (ps — pe) [(ac =) (35)
Traditionally, the elastic curve, A,;, is given in the differential form
dAg(c) o 1 (ce — ¢s)(a—1)
———— = (l=-=h=1
K.\ ) T e -1 (36)

where K. is the bulk modulus (psc?) of the solid material. In the present work, this
differential relation has been replaced by a linear one:

d_A—e mi
Ael(pa CVmin) = Qmin + ’——I((i_g_lll(p - pl(amin)) (37)

The significance of this change can be appreciated by constructing the P-a elastic-plastic
curves from Equations (34) and (36) for parameter values typical of sand. Results are shown
in Figure 3 and indicate that the elastic curves are nearly linear except as o — o, where the
elastic curves displays a nonlinear behavior, rising above the plastic curve, Ay .

. Inverting Equation (37) and solving for p yields:

O — Qmy
Pel(aa amin) = Ppl(amin) + ﬁ . (38)

dp
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COMPUTING p AND ,

The strategy for implementing the P-a model in DYSMAS is to make this it appear
similar to a conventional equation of state. All the work needed to support this equation of
state is encapsulated within a single routine that is called as a function of p,e and ap;i,. This
is accomplished by equating Equations (28) and (33) and iteratively solving the resulting
nonlinear relation

p(a7p’ 6) = P(a,amm) (39)

for a.

The solution of Equation (39) requires the selection of the appropriate branch of the
P(a, amin) curve of which there are three possibilities: elastic, plastic, and the o=1 extension
for compressed material. These three branches are illustrated in Figure 2 for a = o ;,. Also
shown, are three graphs for Equation (28), each associated with a different solution branch.
The graphs for the p(c, p1,€1), p(e, p2,€2), and p(e, p3, e3) curves intersects the a=1 line,
the plastic curve and the elastic curve, respectively. The iterative procedure first determines
the appropriate branch of the P curve and then calculates the point of intersection. The a=1
extension is selected if p(1,p,e) > ps or amin = 1; otherwise the plastic branch applies
if p(amin, ps€) > Ppi(Cmin, &min)- If both tests fail, the intersection with the elastic curve
Pei(a, amin) is computed.

The computation of p given amin, P, €, is a two step process; compute « from Equation
(33) and then use the Mie-Grueneisen function fy to determine the value p, which satisfies:

ap = ps(ap,e) . (40)

CHANGES OF STATE

The isentropic state change is computed by integrating

P2
Q=q+/§@. (@1)
p1

For a P-o material, a closed-form solution is not available and this equation must be solved
numerically. To improve efficiency, the numerical integration need only be carried out when
« > 1. The remaining part of the integration can be computed from the Mie-Grueneisen
equation of state relation, Equation (17).

Hugoniot changes of state are computed by solving the Hugoniot condition:

2p1p2(e2 — e1)
(p2 ~ p1)

pL+p= (42)
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If o1 and o are known, Equation (42) can be written in terms of the solid Mie-Grueneisen
properties (ps,ps) and e can be eliminated. Reintroducing the porous material properties

yields:

Cip1p2 — p1Co
P2=Pt o) _ ppza 43)
2 1-‘opt:t

where: [pr(2p2) — p(a1p1)]

C1 = er(azps) — er(a1p1) —

Fofo )
_ oA p2p1(0z — o)
CZ - (p2 pl) FoPo
With p; known, e; follows from:
ey = 5r(012,P2)v+ [O‘ZPZ "pr(a2>p2)] (45)

Lopo
Since a is often not known, it may be necessary to imbed these relations in an iterative

procedure.
DYSMAS IMPLEMENTATION

A necessary consideration in coupling the P-a equation of state to DYSMAS is com-
patibility with the delta formulation. The solid state regime of the P-a equation of state is
much stiffer than the porous one, and consequently, there is a greater need for accuracy here.
Hence the solid density and energy reference states are used to normalize the density and
energy and the following definitions apply:

Ap =p — Poo; Aps = Ps — Poo
Ap = p— poo; Aps = ps — poo (46)
Ae =€ —eyx; Aes = €5 — poo
Substituting the above into Equations (28) and (29) yields the following relations between
solid and porous material delta properties:
Aps = Ap+ poola — 1)
Aes = Ae 47
Aps =Ap+ poo(a—1).

The required DYSMAS P-a equation of state functions are as follows:

« Function F;: Compute Apy,c? o) given Apy, Aer, min-

 Function F;: Compute Aps, Aes,c3, an given Apy, Aer, Ap2, amin and assuming an
isentropic change of state between Ap; and Apj.

* Function F3: Compute Apz,Aez,cz,a given Apy, Aey, Ap2, amin and assuming a
change of state along the Hugoniot between Ap; and Aps.

- Function Fy: ComputeApy,c?, o1 given Apy, Aey, Qmin

+ Function Fs: Compute Apy, Aes,c3, a2 given Apy, Aey, Apy, amin and assuming an
isentropic change of state between Ap; and Ap;.

» Function Fs: Compute Apz,Aez,cg,az given Api, Aey, Aps, amin and assuming a
change of state along the Hugoniot between Ap; and Ap;.

10
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A detailed description of these routines is provided in Appendix B

The interaction between the DYSMAS scheme and the P-a equation of state during a

computational step can be summarized as follows:

In phase 1, calculated c from Equation (33) with a=a;. Here q; is the value of «
computed in the previous cycle.
Execute the standard Euler algorithm, phases 1-5. However, add the convection of apiy

using:

Xesmi) | v V(pamin) =0 (48)

Use the convected value of ani, in phase 6 to service equation of state calls which then

return the new value of a=q;
At the end of Phase 6, for each cell define:

Amin = min(ala o‘min) (49)

11
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CHAPTER 4
NUMERICAL RESULTS

The numerical scheme outlined in the preceding section has been applied to several types
of cases. The first type is designed to validate implementation of the P-o and compares
DYSMAS to exact solutions and other codes containing the P-o model. The second type
tests the ability of the P-a equation of state to simulate sand. This is accomplished by
comparing calculation and experiment.

VALIDATION TESTS

The implementation of the P-o model in DYSMAS is tested by comparing with an exact
Riemann solution as well as with the CTH* and MMG$ codes. The Mie-Grueneisen and P-a
parameters used in the verification tests are listed in Table 1.

QUANTITY | Verification | SRI 100% SRI 95% SRI 78%. SAMSI
Tests

S 1.93 2.17 2.18 2.13 2.2
Cs .148(109) 2(109%) 2(10%) 2(10%) .14(10%)
Po 2.070 2.052 2.052 2.012 1.444
T .880 865 .870 .846 610
Qo 1.052364 N/A 1.01988 1.10854 1.00958
Ps 6.5(107) N/A 5.(10% 5.(10%) .138(10%)
Ce 6.0(10% N/A 6.0(10% 6.0(10% 1.13(10%
Pe 0. N/A 0. 0. 0.
Qe 1.052364 N/A 1.01988 1.10854 1.00958

TABLE 1. MIE-GRUENEISEN AND P-o PARAMETERS FOR TEST CASES.

Riemann Problem Solutions

Solutions for fully saturated sand and partially saturated sand are considered. Fully
saturated sand is represented by the Mie-Grueneisen Equation of state while the P-a Equation
of state is used to model the partially saturated sand. Computed densities for these two cases
are shown in Figures 4 and 5 and close agreement between computation and experiment is
achieved. These calculations were run using 500 mesh points. The left and right states for
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the fully saturated case were: p; = 2.20,¢; = 5(10%), p; = 4.69(10°); p, = 2.054,¢, =
5(10%),p, = 4.42(10") wu, = 0. The conditions for the partially saturated case were:
p = 4.23(10%), ;1 = 2.20,¢; = 5(10%); p, = 4.42(107), p, = 1.97,€, = 5(10°). In both
cases, left and right state velocities were initially zero.

1-D Spherical bubble for Fully Saturated Sand

This problem consists of a spherical, high pressure gas bubble containing a gamma law
gas (y = 1.3) imbedded in fully saturated sand. The sand is described with a Mie-Grueneisen
equation of state and the computation was completed using a CFL number of .8. The
computed spatial pressure and velocity profiles are exhibited for the DYSMAS, CTH, and
MMG codes in Figures 6 and 7 at five different times during the calculation. The results
from both codes are in good agreement except inside the bubble, where the velocities differ.
Temporal plots of the velocity at points within the bubble exhibit rapid oscillation in all
three of the codes, reflecting the repeated reflection of shock and expansion waves across the
bubble, in response to the bubble surface motion. To the extent that the bubble surface does
not move in precisely the same way in each code, the velocities within the bubble differ.

1-D Spherical bubble for Partially Saturated Sand

This cases is similar to the preceding one with the exception that the sand is not fully
saturated. Accordingly, the sand was modeled using a P-o equation of state with o, taken
to be 1.052808. The computation was completed using a CFL number of .45 and FCT
diffusion and antidiffusion values of .125.

The computed spatial pressure, velocity and o« profiles are shown at four different times
using the DYSMAS, CTH and MMG codes in Figures 8, 9 and 10. As in the fully saturated
sand case, pressure agrees well everywhere, while the velocities are in good agreement
within the sand. The « values are also in close agreement everywhere. Figures 11 and 12
provide the pressure and velocity time histories at three different locations near the explosion
bubbles. These figures compare the DYSMAS, MMG, and CTH codes and close agreement
is obtained.

Figures 13 and 14 demonstrate the influence of the FCT diffusion and antidiffusion
parameters (FCTDIF and FCTADF) on the spatial pressure and velocity distribution. Each of
these figures exhibits calculations with FCTDIF=FCTADF=.125 and FCTDIF=FCTADF=.5.
Changes in the FCT parameters influence the pressure near the shock and near the bubble.
Increasing FCT values widened the compute front and decreased the pressure near the bubble
surface.

13
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2-D TNT Explosion

The computational domain is shown in Figures 15 and 16 and features partially saturated
sand in the lower and water in the upper half of the domain. The initial TNT charge is located
on the sand surface. The computation was completed using a CFL number of .45 and FCT
parameter settings of .5. The calculation was viable for lower values of the FCT parameters;
however, the solutions exhibited excessive oscillations. The pressure distribution is shown
in Figure 15 and clearly illustrates the propagation of the explosion shock through the water
and sand. The diminished shock radius in the sand along the vertical is a consequence of
the lower sound speed in this material. The sand shock shape curves outwards near the
water/sand interface. This is a consequence of the pressure imposed on the sand by the
shocked water near this interface.

Figure 16 illustrates the behavior of o in the computational domain. The black level
is that of the virgin sand (o = 1.052808) while the light level in the water and behind the
sand shock represents a value of 1. It is evident that the passage of the shock compresses
the sand material to a solid state.

Computed pressure profiles are compared for the DYSMAS and MMG codes in Figures
17, 18 and 19. The first of these figures illustrates the pressure profile along the centerline
of the computational domain. The remaining two figures demonstrate horizontal traverses
through the flow field, slightly above and slightly below the sand/water interfaces. This three
paths are indicated by the dotted lines in Figure 15.

APPLICATION OF P-a TO SAND TESTS

The capability of the P-o equation of state to model sand is tested by comparing with
experiment. Two different sets of data are used: SRI 1-D sand explosions and SAMSI 2-D
explosive induced deformation of the buried target. In each case, initial estimates of the
Mie-Grueneisen equation of state parameters were constructed from the water and sand grain
value as described in Appendix E. Additional p-o parameters were based on test results (if
available) and experimentation.

SRI Particle Velocity Tests

The SRI tests consist of an explosion within a sand filled, cylindrical container’. Particle
velocities at different distance from the explosion were measured as a function of time. The
resulting experiment is 1-D until the shock arrives at the container walls. Measurements
were made using fully saturated, 95% saturated and 78% saturated sand.

The Mie-Grueneisen parameters (Cs, S, and I'o) for the fully saturated sand-water
mixture were adjusted to best match experiment. The initial density was available from
the experiment. For partially saturated sand, additional parameters need to be specified: oo,
Ps, and pe. o, was computed from the measured dry, fully saturated and partially saturated
sand density, pe was taken as zero and Py was adjusted to best match experiment. The
selected set of parameters is given in Table 1.

14
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The measured results for the SRI test are shown in Figures 20, 21 and 22 along with
the computational results for each test. An examination of these figures indicates that the
computed velocity immediately following the arrival of the explosion shock are in reasonable
agreement with experiment. However, experimental results diminish faster than the calculated
results.

SAMSI Target Deformation Tests Conducted At WES

In each of these three tests®, a mine-like target was buried in a sand-like soil and subjected
to an explosive shock. The experimental arrangement for this test is depicted in Figure 23a
and features 8 lbs of pentolite and an 8in in diameter aluminum target. Pressures were
monitored at several locations in the sand and the final deformation of the mine face was
recorded.

The first SAMSI test has been simulated with a coupled Eulerian/Lagrangian DYSMAS
calculation. The setup for this calculation, including the grids for the Euler and Lagrangian
modules, are depicted in Figure 23b. The calculation was performed using 2-D, cylindrical
coordinates, with the coordinate axis orientated along the center of the explosive charge and
the mine. The water above the sand and the in-situ soil, located 3 ft below the mine were
ignored.

The “sand” in this test consisted of a grout with a nominally .5% to 1% air content.
Density was the only piece of information available to characterize the sand. The remainder
of the P-a equation of state parameters were determined empirically by comparing calculation
and sand pressure measurements. Table 1 provides the selected set of parameter values.

The evolution of the flow field is shown in Figures 24 to 27. Here the passage of the
shock through the sand is clearly visible as is the interaction between the shock and the
deforming target surface. The weak shock visible in Figure 26 above the cylinder arises
from the initial impact shock transmitted through the target. A comparison of the measured
and the calculated pressures in the sand is provided in Figure 28. The calculations are in
reasonable agreement with experiment, although the computed pressure level is marginally
higher than experiment for the gauge near to the explosion.

Figure 29 presents the displacement history at the target surface centerline. Also included
in this figure is the target translation and a second curve which is the difference between
the displacement and the translation. This final curve represents the centerline deformation
The final computed target-surface deformation profile is shown in Figure 30 and is in good
agreement with measured values, which are also given.

15




NSWCDD/TR-95/107

CHAPTER 5
SUMMARY AND CONCLUSIONS

The Mie-Grueneisen and P-« equations of state have been incorporated into the DYSMAS
code. The form of these equations of state follows from Reference 3; however, the manner
of implementation has been altered to provided compatibility with the DYSMAS code. In
particular, these equations were cast in the DYSMAS delta form and two auxiliary functions
were constructed to compute isentropic and Hugoniot jumps. In addition, a second form for
these equations of state and auxiliary functions were developed which were a function of
(p,e) rather than the usual (p,e). The inverted equation of state form and auxiliary function
were implemented numerically.

The P-a equation of state routine was constructed to be similar to other equations of
state and differs only in the need to specify the minimum « . This parameter represents
the minimum value of o attained by the material at the point of interest. Thus, the form
for the equation of state is p(@min,p,€) OF p(@min,P,¢). A Newton iteration was performed to
determine the pressure or density associated with the calling arguments.

The implementations of the Mie-Grueneisen and P-a equations of states have been
numerically verified by comparing with exact solutions and the results from other codes.
The exact solutions cases were 1-D planar Riemann problems, while the code comparison
cases consisted of a spherical explosion (explosive surround by sand) and a 2-D simulation
of an underwater explosive sitting on a sand bottom. In all cases, the DYSMAS results
compared closely to the appropriate benchmark.

The veracity of P-a as a sand model was tested by comparing with two experiments.
The first was the SRI explosion in a canister test which was simulated using a 1-D spherical
calculation. The second test featured a target buried in sand that was subjected to an
explosion. In the latter case, the Euler code was coupled to the Lagrangian code, and
target deformation as well as sand pressure were compared to experiment. In both cases the
predictions and experiment were in reasonable agreement with experiment.

» The numerical results presented in this paper establish the validity of the P-a implemen-
tation in the DYSMAS code. In addition, agreement between calculation and experiment
demonstrated on the two test cases is encouraging. However, additional comparisons with
experiment are necessary to more fully ascertain the merits of the P-a equation of state as
a sand model.
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GLOSSARY
symbol Definition
ag...as. see Equation (6)
A o function, Equation (32)
c Sound speed
Ce Reference sound speed in porous material
Cs Reference sound speed in solid (non-porous) material
e Energy
€o Mie-Gruneisen equation of state reference state energy

Mie-Gruneisen equation of state reference energy

p Pressure

Pe Pressure plastic behavior of P-o material is initiated
Pmax Maximum pressure experienced experienced by material
Po Mie-Gruneisen equation of state reference state pressure
Pr Mie-Gruneisen equation of state reference pressure

Ps Solid material pressure

Ps Pressure at which all pores are crushed

Pt Material derivative of pressure

P Inverse of A function, Equation (33)

s Entropy

S Coefficient relating shock (u,) and particle velocity (up): us = ¢, + Suy
Y See Equation (5)

o' Degree of porosity, see Equation (29)

Qe Maximum o where Ay is valid

Qy Local o at a particular cell

Qo Initial o at p=0

Q'min Minimum value of « achieved by material

Ap,Ap,Ae See Equation (21)
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See Equation (21)

See Equation (46)

Gruneisen parameter at p,

Equation (4)

Density

Mie-Gruneisen equation of state reference state density

Solid material density

Subscripts

Initial and final equation of state conditions
Elastic curve

Plastic curve

Isentropic or solid
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FIGURE 2. POSSIBLE P-o SOLUTIONS OF p(a,p,e) = P(min,P)
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FIGURE 20. COMPUTED AND MEASURED VELOCITIES FOR THE 100% SATURATED SRI TEST.
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FIGURE 24. COMPUTED PRESSURES FOR THE SAMSI TEST AT 734 uSECS.

FIGURE 25. COMPUTED PRESSURES FOR THE SAMSI TEST AT 789 uSECS.
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FIGURE 26. COMPUTED PRESSURES FOR THE SAMSI TEST AT 844 uSECS.
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FIGURE 27. COMPUTED PRESSURES FOR THE SAMSI TEST AT 953 uSECS.
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APPENDIX A
MIE-GRUENEISEN EQUATION OF STATE ROUTINES
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This appendix provides a description of the MieGrueneisen equation of state subroutines.
Subroutine STDMIE: f1(Ap1, Aer) — (Apy,ci, Apy,, Aer,)

a. Function: Compute Apy,c? given Ap;, Ae.

b. Description: Evaluate appropriate equations.

c. Algorithm: Solve Eq. (22) for Ap and Eq. (23) for ¢2. Evaluating these equations
requires use of Egs. (2)-(6), (11) and also produces Ap,,, Aey,.

Subroutine ISEMIE: f5(Ap1, Aer, Apy) — (Apz, Aeg,c3)

a. Function: Compute Apg, Aes,c? given Api,Aeg,pz and assuming an isentropic
change of state between Ap; and Aps.

b. Description: Evaluate Equation (25 )

c. Algorithm:

fI(API, Ael) — (Apla c%’ Aph ) Ae"'l)

fl (APZ, Ael) - (Apta Cty Ap"’zv Ae“'z)

compute Aep from Eq. (16) and solve Equation (22) for Ap,.
Re-evaluate ¢: c? = ¢ + [ppo(Aps — Apy)/p2

Subroutine HUGMIE: fg(Apl,Ael,Apz) - (Apz, Aeg,c%)

a. Function: Compute Ap,,Aey,c2 given Apy, Aey, Apy and assuming a change of
state along the Hugoniot Ap; and Aps.

b. Description: Evaluate Equation (26).

c. Algorithm:

fl(API, Ael) - (API ) C%, Apr;l ) Aerl)
J1(Ap2, Aer) — (Apy, ety Apr,, Aey,)
Compute 6p from Eq. (26).

Ap; = Ap1 + ép

Solve Eq. (22) for Ae,.

Re-evaluate c: ¢ = c? + T,p,(Aps — Apy)/p2

Subroutine ISTMIE: f4(Ap;, Aey) — (Apy,c?)

a. Function: Compute Ap;,c? given Ap;, Ae;
b. Description: Iterate for the value of p which statisfies Equation (22).
c. Algorithm:

Ap® =0
Iterate from n=1 until convergence or n > maximum number of iteration.

fi (Ap;‘_l,Ae) — (Ap",czn)
compute (gﬁ%) from Eq. (12).
€

Compute §p" = (Aps — AP“)/(%)‘B

A-3
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if §p" < 10~6 iteration is complete. Otherwise:

Ap™ = Ap™ ! + min[maz(§p”, —.2),.2] (D

Set: Ap; = Ap™;, ¢ =c"

5. Subroutine IISMIE: f5(Api,Aer, Apy) — (Apz,Aez,c%)

a. Function: Compute ps, e, c3 given py,e;, p; and assuming an isentropic change of
state from Ap; and Aps.

b. Description: Apply ISTMIE to determine initial density. Iterate for a final value of
rho which is on the same isentrop as the initial conditions and has a pressure value
equal to pa

c. Algorithm:

fa(Dp1, Aer) = (Apr, )
8§00 = (Apz — Ap)/c%; AeY = Aey; Ap® = Apy
Iterate from n=1 until convergence or n > maximum number of iteration.

Ap™ = Ap"™ ! + min[maz(8p™, —.2), .2]

h (Ap", Ae"‘l) — (Apt, Aer,, c%)

Solve Eq. (25) for Ae®

Solve Eq. (22) for Ap"

Re-evaluate c;: ¢, = c? + Lopo(Ap™ — Apy)/p5
§p" = (Ap? — Ap") /<,

If 6p™ < 1078 iteration is complete.

Apy = Ap™; Aey = Ae™

6. Subroutine IHUMIE: fs(Ap1,Aer, Ap2) — (Ap2, Aeg,cl)

a. Function: Compute pg, ez, c2 given p;,e1,p; and assuming a change of state along
the Hugoniot from Ap; and Aps.
b. Description: Apple ISTMIE to determine the initial density. Iteratre for a final value
of denity which as along Hugoniot and produces the pressure p;
c. Algorithm:
f3(Ap1,A81) - (Aplac%)
Iterate from n = 1 until convergence or n > maximum number of iterations. Start
iteration with: §p! = ép/c2; Ae® = Aer; Ap® = Ap;
Ap® = Ap™ 1 + min[maz(8p", —.2),.2]
Solve Eq. (17) for Ae? and set Ae™ = Ae?
fl (Apl? Ael) — (Ap",Aenc%)
6p = (Apz = Ap")/cf
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If §p < 10~°, iteration is complete. Otherwise :

, 5p' _ 5pn—1 .
Sp" = =6 —_— >1
(£ .
6ﬂn = '—6pl n=1
Apy = Ap1+68p Aey = Ae”
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APPENDIX B
P-o EQUATION OF STATE ROUTINES
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This appendix provides a description of the P-a equation of state subroutines. In many
cases the Mie-Grueneisen Equation of State are called

1. Subroutine STDP_A: Fi(Ap1, Ae1, omin) — (Apl,c%,Aprl,Aerl,al)

a.

Function: Compute Ap;,c?, a1 given Ap;, Aer, amin.

b. Description: Solves Equation (39) Iteratively

C.

Algorithm:

Check for the solid case. If p(1,p,e) > ps or amin = 1 then material is
compressed to a solid and p = p(1,p,e) and a = 1

Otherwise, check plastic case. If p(amin, p,€) > Ppi(@min, ¢min), use Newton
iteration to solvep(a, p,€) = Pp(p, tmin)-

Else the case is elastic. Apply a Newton iteration to solve p(a,p,e) =
P (P, amin)-

2. Subroutine ISEP_A: Fy(Ap1, Ae1, Aps, amin) — (Apz,Aez’C%,az)

a.

Function: Compute Ap;, Aeg,c2,az given Api, Aei, p2, dmin and assuming an
isentropic change of state.

Description: Evaluate Equation (42) numerically using a 2 point Runge method. Use
Equation (25) for parts of the change of state path where o=1.

Algorithm:

FI(API, Aeh amin) - (API, C%’ Aph ) Aeh)
If amin<1 CALL ISEMIE
Else to numerically ntegrate Equation (42).

apply a 2 point Runge-Kutta method,
If o=1 after any step CALL ISEMIE to complete integration.

3. Subroutine HUGP_A:F3 (Apl, Aey, Apg, amin) — (Apz, Aezyc%, Otz)

a.

Function: Compute Aps, Aes,c2,az given Apy, Aey, Apa, omin and assuming a
change of state along the Hugoniot.

Description: Use iteration to determine an o which satisfies Equation (44).
Algorithm:

If armin = 1 Solve for final state with Equations (44)-(46) using oq = a3 = 1.
Perform Newton iteration oncy for final state using Equations (44)-(46).
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4. Subroutine ISTP_A: F4(Api,Aer, amin) — (Apl,c%,al)

Function: Compute Apl,c%,al given Ap;, Aey, amin
Description: Compute « using Equation (33) and the find the density by calling
subroutine ISTMIE

Algorithm:
If p > p; or ami, = 1 call ISTMIE to determine p; and c%.

Otherwise:

Compute o from Equation (33) and Ap; = aAp + (@ — 1)po
f4(AP87A61) - (Aps,cg)
Compute Ap = %{’—’ + poo(L —1)

5. Subroutine IISP_A: F5(Api, Ae1, Apz, omin) — (Apg,Aeg,C%,az)

a.

b.

Function: Compute p2, ez, c3, a2 given p1,e1, p2, umin and assuming an isentropic
change of state.

Description: Numerically integrate Equation (42) from the initial state until target
pressure is reached.

Algorithm:

° F4(Ap17 Aela amin) - (Apl, C%n)
» Integrate Equation (42) until p=p;

Apply a 2 step Runge Kutta method.
R (Ap", Ae™ 1, am,’n) — (Ap", c%)

» Interpolate for:

Apy = Ap" —I(Ap" — Ap"‘l)
Aey = Ae™ — 9 <£>

dp
where : )
_ n—1
9= (1_ A= AP
Ap" _ Apn—l

+  Compute final properties:Fi (Apz, Aeg, amin) — (Ap2,c3)
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6. Subroutine IHUP_A: Fg(Apy, Ae1, Apz, min) — (Apz, Aea, c, a2)

a.

b.

Function: Compute p2,62,c%,az given p1,e1, p2, @min and assuming a change of
state along the Hugoniot.

Description: Compute a1, o using p;, p2 and Equation (33). Use a Newton iteration
to solve Equation (44).

Algorithm:
* If amin=1, material is fully compacted. Compute p,, €5, c% from fo(Ap;, Aey, Aps) —
(APZs AGZ)

e Otherwise

Compute aj, a using pi, p2 and Equation (33).
Iterate for value of p; which satisfies Equation (33)
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Name: MP_ALP
Indicates the number of P-o materials included in the calcualtion.

Default: MP_ALP= 0
Restrictions: MP_ALP=0
Recommendation: none

Remarks:

Up to 9 P-a materials can be included in the calculation. The increased storage per cell is
2*MP_ALP. The reference and initial property for a P-o material is described in the same
manner as other materials. Materials 91-95 are reserved for P-o equations of state while
96-99 are for Mie-Grueneisen Equation of state materials
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Codeword: EQSTPAR (7/9)

Mie-Grueneisen Equation of State (96<NM<99)

p= pr(P) + Fopo(e - 67(?)) 4)

See NSWC/TR-95/107 for definition of constants in equation.
Input parameters

pos variable internal name accepted if
3 S ESCAPA always
4 c ESCAPB always
5 Po ESD always
6 Po ESALPH always
7 €o ESBETA always
8 To ESGAMM always
9 Peav ESPCAV 1=0

10 A pmax DRHOMX 1=0

11 A pmin DRHOMN =0
Remarks:

The EQSTPAR section should preceed the MATERIAL section. To avoid confusion
with existing material definitions, use NM=99 for Mie-Grueneisen materials defined using
EQSTPAR section
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Codeword: EQSTPAR (8/9)

P-a_Equation of State (90<NM<95)
See NSWC/TR-95/107 for a definition of the P-o Equation of State.
Input parameters

pos variable internal name accepted if
3 S ESCAPA always
4 c? ESCAPB always
5 Po ESD always
6 Po ESALPH always
7 €o ESBETA always
8 To ESGAMM always
9 Qo ESDELT always
10 Aps ESES always
11 Ce ESESP always
12 Ape ESIOTA always
13 Pcav ESPCAV 1=0

14 A pmax DRHOMX 1=0

15 A pmin DRHOMN =0

Remarks:

The EQSTPAR section should preceed the MATERIAL section. To avoid confusion
with existing material definitions, use NM=95 for Mie-Grueneisen materials defined
using EQSTPAR section
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APPENDIX D
STORAGE ARRYAS FOR EQUATIONS OF STATE PARAMETERS
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The Mie-Grueneisen and P-o equations of state make use of a number of amterial
constants. The following table provides a list of these variables using the symbols defined
in the Glossary.

Internal Name P-a constants Mie-Gruneisen constant
ESCAPA S S
ESCAPB 2 c2
ESCAPC aj aj
ESCAPD a a

ESA as as
ESB ay ay
ESC as as
ESD Po Po
ESALPH Po Po
ESBETA €o o
ESGAMM To T
ESDELT Qo
ESES Aps
ESESP Ce
ESETA Ape
ESIOTA Qe
ESPCAV Pcav
DRHOMX A pmax
DRHOMN Apmin

D-3



S Y 2 T WS RS WS W M R R I N I —

NSWCDD/TR-95/107

APPENDIX E
COMPUTING THE P-« PARAMETERS FOR SAND
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Sand consists of sand grain, water, and air. The air and water form a mixture which fills
the pore spaces between the sand grains. The solid component of the P-a model represents
the sand grain and water mixture, while the void simulates the air. To apply the P-oo model
to sand, the Mie-Grueneisen equation of state parameters for this solid component must be
constructed from the known water and sand grain properties.

The information required to construct the Mie-Grueneisen constants for the grain-water
mixture are:

1. The dry sand density, pq
2. The saturation, s.
3. The following material properties for water and sand grain:

Density, p.

Sound speed, c.

The MieGrueneisen Constants, I',.

The shock velocity verses particle velocity slope, S.
Specific heat, Cy (optional for many applications).

© o op

The porosity, n, which is the volume fraction of the void, is given by:

n = Q’Q__Ld) ) E- 1
Pg
The density of the compacted sand with all of the air pore volume eliminated is:
(1- n)Pg + Snpy
— E-2
Pw+g 1 _ (1 _ S)n I
while the mass fractions of the grain and water components of this mixtures are
SN Py
Aw = E-3
YT (L= n)pg + snpy
and )
)‘g — ( — n)py . E- 4
(1 —n)pg + snpy
Furthermore, from Equations (E-2) to (E-4) it follows that
Vgtw = Ag¥g + Ay , E-5

where v is the specific volume.
The specific heat for the grain-water mixture follows directly from a mass average:

Cogrw = 2gCl, + AuCo, E- 6

The speed of sound for the grain-water mixture arises from the definition:

2
c2=-—v2(@) =2 E- 7
8

Ov
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Assuming that the water and grain components are always in pressure equilibrium, the
denominator of Equations (E-5) can be evaluated by differentiating Equation (E-7), which

yields:

Ov\ _ Vgtw _ Ovg Ovw\ vﬁ v
_(3p>s— . _—Ag(ap T\ ), T e e

Cotw
Solving for the grain-water sound speed yields:

2 = Vitw _ 1
g+w v2 v2 o9 ) I
/\gzg‘ + )\wa% Pg+w (Zg'zg + 2 pwi )

The grain-water I' also follows directly from the definition:

-1
(%)
op/,
Noting that eg+w = Ageg + Awey, and differetiating with respect to p yields:

v 1
_ gtw _
Fgrw = o X

E g Apvy g A )
g + fw p9+w<I‘gpg prw)

E- 10

E- 11

The final property of interest is S, the slope of the up verses us relation. This quantity

is treated in a manner analogous to sound speed. Thus,

§2,, = !
grw T o ) 2
Potw (S?%Z ST )
E-4

E- 12
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